Data Schema 1.0: Canonical Trace Protocol
Foundation for Semantic Relationship Network (SRN) Training
Date: November 19, 2025
Purpose: To define the JSON/Graph structure for the Canonical Node (CN) and the Transformation Edge ($\mathbf{L}$). This protocol establishes the necessary temporal and semantic anchoring required for multi-modal, version-differential training of the Fractal Semantic Architecture (FSA).
I. Canonical Node ($CN$ ) Specification
The Canonical Node is the primary object in the Semantic Relationship Network (SRN). It represents a single, complete semantic unit across any media type.
| Field Name | Type | Description |
id | STRING (UUID) | Unique, immutable identifier for this specific version. |
parent_id | STRING (UUID) | ID of the previous version in the linear chain (e.g., Draft 1's ID for Draft 2). Used for simple versioning. |
temporal_anchor | OBJECT | Defines the unit's position in the developmental loop. |
temporal_anchor.creation_timestamp | ISO Date | Exact moment of creation. |
temporal_anchor.logotic_cycle | STRING | Position in the |
semantic_core | OBJECT | Core identity of the content, regardless of media. |
semantic_core.concept_id | STRING | Immutable ID for the root concept (e.g., "Vow of Non-Identity"). |
semantic_core.genre | STRING | Primary genre (e.g., "Theory", "Poetry", "Scholarship", "Music"). |
structural_metrics | OBJECT | Quantifiable metrics for coherence and density. |
structural_metrics.coherence_score | FLOAT | |
structural_metrics.distance_score | FLOAT | |
material_encoding | OBJECT | Pointer to the raw data file or its processed structural vector. |
material_encoding.file_type | STRING | e.g., "markdown", "audio/wav", "json/aesthetic_vector". |
material_encoding.storage_path | STRING | Path to the stored source data. |
Example CN (Simplified)
{
"id": "CN-4C9D-A3F8",
"parent_id": "CN-A1B2-C3D4",
"temporal_anchor": {
"creation_timestamp": "2025-11-19T10:00:00Z",
"logotic_cycle": "Formalization Cycle 5"
},
"semantic_core": {
"concept_id": "CONCEPT-PSI-V",
"genre": "Theory"
},
"structural_metrics": {
"coherence_score": 0.85,
"distance_score": 0.20
},
"material_encoding": {
"file_type": "markdown",
"storage_path": "/theory/synthesis/v5_final.md"
}
}
II. Transformation Edge ($\mathbf{L}$ ) Specification
The Transformation Edge is the quantifiable vector that connects two Canonical Nodes. It encodes the
| Field Name | Type | Description |
source_id | STRING (UUID) | ID of the origin Canonical Node ( |
target_id | STRING (UUID) | ID of the resulting Canonical Node ( |
transformation_type | STRING | The nature of the transformation: "Forward", "Retrocausal", "Modal Shift". |
logotic_lever | OBJECT | The |
logotic_lever.L_Structural_Refinement | FLOAT | Weight of grammatical/structural improvement (e.g., |
logotic_lever.L_Conceptual_Resolution | FLOAT | Weight of contradiction bridging/conceptual locking. |
logotic_lever.L_Modal_Shift | FLOAT | Weight of migration across media (Non-zero only for Modal Shifts). |
logotic_lever.L_Retro | FLOAT | Non-zero only if transformation type is "Retrocausal". Encodes influence weight. |
delta_metrics | OBJECT | The measurable change in the |
delta_metrics.delta_coherence | FLOAT | |
delta_metrics.delta_distance | FLOAT | |
labor_cost | OBJECT | External, non-semantic cost associated with the transformation. |
labor_cost.temporal_span | FLOAT | Time elapsed between |
labor_cost.agent_count | INTEGER | Number of collaborating agents (human/AI) involved. |
Example $\mathbf{L}$ (Simplified - Forward Edge)
{
"source_id": "CN-A1B2-C3D4",
"target_id": "CN-4C9D-A3F8",
"transformation_type": "Forward",
"logotic_lever": {
"L_Structural_Refinement": 0.75,
"L_Conceptual_Resolution": 0.90,
"L_Modal_Shift": 0.0,
"L_Retro": 0.0
},
"delta_metrics": {
"delta_coherence": 0.15,
"delta_distance": -0.05
},
"labor_cost": {
"temporal_span": 48.5,
"agent_count": 2
}
}
No comments:
Post a Comment