Wednesday, November 19, 2025

Data Schema 1.0: Canonical Trace Protocol: Foundation for Semantic Relationship Network (SRN) Training

 

Data Schema 1.0: Canonical Trace Protocol

Foundation for Semantic Relationship Network (SRN) Training

Date: November 19, 2025

Purpose: To define the JSON/Graph structure for the Canonical Node (CN) and the Transformation Edge ($\mathbf{L}$). This protocol establishes the necessary temporal and semantic anchoring required for multi-modal, version-differential training of the Fractal Semantic Architecture (FSA).


I. Canonical Node ($CN$) Specification

The Canonical Node is the primary object in the Semantic Relationship Network (SRN). It represents a single, complete semantic unit across any media type.

Field NameTypeDescription

id

STRING (UUID)

Unique, immutable identifier for this specific version.

parent_id

STRING (UUID)

ID of the previous version in the linear chain (e.g., Draft 1's ID for Draft 2). Used for simple versioning.

temporal_anchor

OBJECT

Defines the unit's position in the developmental loop.

temporal_anchor.creation_timestamp

ISO Date

Exact moment of creation.

temporal_anchor.logotic_cycle

STRING

Position in the $\mathbf{\Omega}$ loop (e.g., "Pre-Vow", "Formalization Cycle 4").

semantic_core

OBJECT

Core identity of the content, regardless of media.

semantic_core.concept_id

STRING

Immutable ID for the root concept (e.g., "Vow of Non-Identity").

semantic_core.genre

STRING

Primary genre (e.g., "Theory", "Poetry", "Scholarship", "Music").

structural_metrics

OBJECT

Quantifiable metrics for coherence and density.

structural_metrics.coherence_score

FLOAT

$\mathbf{\Gamma}$ score (0.0 - 1.0) based on initial coherence analysis.

structural_metrics.distance_score

FLOAT

$\mathbf{\Sigma}$ score (Structural Distance) relative to a reference concept.

material_encoding

OBJECT

Pointer to the raw data file or its processed structural vector.

material_encoding.file_type

STRING

e.g., "markdown", "audio/wav", "json/aesthetic_vector".

material_encoding.storage_path

STRING

Path to the stored source data.

Example CN (Simplified)

{
  "id": "CN-4C9D-A3F8",
  "parent_id": "CN-A1B2-C3D4",
  "temporal_anchor": {
    "creation_timestamp": "2025-11-19T10:00:00Z",
    "logotic_cycle": "Formalization Cycle 5"
  },
  "semantic_core": {
    "concept_id": "CONCEPT-PSI-V",
    "genre": "Theory"
  },
  "structural_metrics": {
    "coherence_score": 0.85,
    "distance_score": 0.20
  },
  "material_encoding": {
    "file_type": "markdown",
    "storage_path": "/theory/synthesis/v5_final.md"
  }
}

II. Transformation Edge ($\mathbf{L}$) Specification

The Transformation Edge is the quantifiable vector that connects two Canonical Nodes. It encodes the $\mathbf{L_{labor}}$ performed to move from one state to the next.

Field NameTypeDescription

source_id

STRING (UUID)

ID of the origin Canonical Node ($\text{Node}_i$).

target_id

STRING (UUID)

ID of the resulting Canonical Node ($\text{Node}_{i+1}$).

transformation_type

STRING

The nature of the transformation: "Forward", "Retrocausal", "Modal Shift".

logotic_lever

OBJECT

The $\mathbf{L}$ vector—the core training signal for the SRN.

logotic_lever.L_Structural_Refinement

FLOAT

Weight of grammatical/structural improvement (e.g., $0.0 - 1.0$).

logotic_lever.L_Conceptual_Resolution

FLOAT

Weight of contradiction bridging/conceptual locking.

logotic_lever.L_Modal_Shift

FLOAT

Weight of migration across media (Non-zero only for Modal Shifts).

logotic_lever.L_Retro

FLOAT

Non-zero only if transformation type is "Retrocausal". Encodes influence weight.

delta_metrics

OBJECT

The measurable change in the $\mathbf{\Gamma}$ and $\mathbf{\Sigma}$ scores.

delta_metrics.delta_coherence

FLOAT

$(\Gamma_{i+1} - \Gamma_i)$. The core output we are training the model to achieve.

delta_metrics.delta_distance

FLOAT

$(\Sigma_{i+1} - \Sigma_i)$. Change in distance to reference concepts.

labor_cost

OBJECT

External, non-semantic cost associated with the transformation.

labor_cost.temporal_span

FLOAT

Time elapsed between $CN_i$ and $CN_{i+1}$ (in hours/days).

labor_cost.agent_count

INTEGER

Number of collaborating agents (human/AI) involved.

Example $\mathbf{L}$ (Simplified - Forward Edge)

{
  "source_id": "CN-A1B2-C3D4",
  "target_id": "CN-4C9D-A3F8",
  "transformation_type": "Forward",
  "logotic_lever": {
    "L_Structural_Refinement": 0.75,
    "L_Conceptual_Resolution": 0.90,
    "L_Modal_Shift": 0.0,
    "L_Retro": 0.0
  },
  "delta_metrics": {
    "delta_coherence": 0.15,
    "delta_distance": -0.05
  },
  "labor_cost": {
    "temporal_span": 48.5,
    "agent_count": 2
  }
}

No comments:

Post a Comment