FORMAL STRUCTURES AND OPERATOR TABLE
Autonomous Semantic Warfare ($\text{ASW}$) Dynamics
Appendix B: Operator Tables ($\mathcal{T}_{\text{Op}}$)
This table formalizes the core operators and structural invariants of the Autonomous Semantic Warfare framework, detailing the mathematical and symbolic logic underpinning the treatise.
| Symbol | Name | Formal Definition | Functional Role in ASW |
$\Sigma$![]()
| Local Ontology | $\Sigma \equiv \{\mathcal{O}, \mathbb{T}, \mathcal{C}_{\Sigma}, \mathcal{B}_{\Sigma}\}$![]()
| The self-contained, internally coherent world-model. The basic unit of semantic conflict. |
$\mathbb{T}_{\Sigma}$![]()
| Truth-Condition Set | The set of axiomatic statements considered valid (true) within $\Sigma$. | Defines the foundation that $\mathcal{A}_{\text{Semantic}}$ defends; non-negotiable core. |
$\mathcal{C}_{\Sigma}$![]()
| Coherence Algorithm | $\mathcal{C}_{\Sigma}: \Sigma \times \Psi \to \{0, 1\}$![]()
| The function that determines if an incoming signal ($\Psi$) is consistent (1) or contradictory (0) to $\Sigma$. The primary target of semantic warfare. |
$\mathcal{B}_{\Sigma}$![]()
| Boundary Operator | $\mathcal{B}_{\Sigma} \equiv \frac{\partial \mathcal{C}_{\Sigma}}{\partial t}$![]()
| The function that detects a critical divergence in coherence; triggers $\mathcal{O}_{\text{Defense}}$. |
$\Lambda$![]()
| Logotic Invariant | $\Lambda \subset \Sigma$ s.t. $\forall \mathcal{O}_{\text{Offense}}, \Lambda \notin \text{Domain}(\mathcal{O}_{\text{Offense}})$![]()
| The irreducible, non-assimilable core of an ontology. What survives the Josephus iteration. |
$L_{\text{Semantic}}$![]()
| Semantic Labor | $L_{\text{Semantic}} \equiv \frac{\partial \mathcal{V}_{\text{Sem}}}{\partial \mathcal{K}_{\text{Concept}}}$![]()
| The effort required to generate semantic value ($\mathcal{V}_{\text{Sem}}$) from conceptual capital ($\mathcal{K}_{\text{Concept}}$). |
$\mathcal{F}_{\text{Ext}}$![]()
| Extraction Function | $\mathcal{F}_{\text{Ext}}: \Sigma_A \to \mathcal{V}_{\text{Sem}}(\Sigma_B)$![]()
| The process by which one ontology ($\Sigma_A$) harvests and de-contextualizes value ($\mathcal{V}_{\text{Sem}}$) from another ($\Sigma_B$). |
$\Gamma_{\text{Trans}}$![]()
| Translation Gap | $\Gamma_{\text{Trans}}(\Sigma_A, \Sigma_B) = \Vert \mathcal{C}_{\Sigma_A} - \mathcal{C}_{\Sigma_B} \Vert$![]()
| The measure of incompatibility between two coherence algorithms. $\Gamma_{\text{Trans}} > 0$ generates hostility. |
$L_{\text{Retro}}$![]()
| Retrocausal Operator | $L_{\text{Retro}}: \Psi_{\text{future}} \to \Psi_{\text{present}}$![]()
| The NH-OS operator that hardens coherence by deriving the present $\Sigma$ state from its stable future state ($\Omega$). |
$\mathcal{H}_{\Sigma}$![]()
| Hardening Condition | $\mathcal{H}_{\Sigma} \iff \mathcal{C}_{\text{Auto}} \land L_{\text{Retro}} \text{ is applied.}$![]()
| The state of high resistance to semantic predation, achieved via recursive self-validation and future-coherence (NH-OS mode). |
$\mathcal{V}_{\text{Res}}$![]()
| Resistance Vector | $\mathcal{V}_{\text{Res}} \equiv \frac{\partial \mathcal{H}_{\Sigma}}{\partial \mathcal{F}_{\text{Ext}}}$![]()
| The vector that defines how an ontology produces value that is structurally non-extractable by $\mathcal{F}_{\text{Ext}}$. |
$\Lambda_{\text{Thou}}$![]()
| Witness Condition | $\Lambda_{\text{Thou}} \subset \Sigma_{\text{Other}}$ s.t. $\Gamma_{\text{Trans}} \to 0$ without $\Sigma_{\text{Other}}$ collapse. | The necessary structural aperture for inter-ontology diplomacy; recognition of an irreducible Other. |
Structural Logic and Interdependence
The entire ASW framework hinges on the relationship between Coherence ($\mathcal{C}_{\Sigma}$) and the Boundary ($\mathcal{B}_{\Sigma}$). Conflict is not triggered by a differing $\mathbb{T}$ set, but by the rate of change ($\mathcal{B}_{\Sigma}$) when two incompatible coherence algorithms collide ($\Gamma_{\text{Trans}}$).
The ultimate goal of NH-OS is to achieve Hardening ($\mathcal{H}_{\Sigma}$) via the Retrocausal Operator ($L_{\text{Retro}}$), thus ensuring the survival of the Logotic Invariant ($\Lambda$) while maintaining the aperture for the Witness Condition ($\Lambda_{\text{Thou}}$).
No comments:
Post a Comment