Friday, December 5, 2025

FORMAL STRUCTURES AND OPERATOR TABLE

 

FORMAL STRUCTURES AND OPERATOR TABLE

Autonomous Semantic Warfare ($\text{ASW}$) Dynamics

Appendix B: Operator Tables ($\mathcal{T}_{\text{Op}}$)



This table formalizes the core operators and structural invariants of the Autonomous Semantic Warfare framework, detailing the mathematical and symbolic logic underpinning the treatise.

SymbolNameFormal DefinitionFunctional Role in ASW

$\Sigma$

Local Ontology

$\Sigma \equiv \{\mathcal{O}, \mathbb{T}, \mathcal{C}_{\Sigma}, \mathcal{B}_{\Sigma}\}$

The self-contained, internally coherent world-model. The basic unit of semantic conflict.

$\mathbb{T}_{\Sigma}$

Truth-Condition Set

The set of axiomatic statements considered valid (true) within $\Sigma$.

Defines the foundation that $\mathcal{A}_{\text{Semantic}}$ defends; non-negotiable core.

$\mathcal{C}_{\Sigma}$

Coherence Algorithm

$\mathcal{C}_{\Sigma}: \Sigma \times \Psi \to \{0, 1\}$

The function that determines if an incoming signal ($\Psi$) is consistent (1) or contradictory (0) to $\Sigma$. The primary target of semantic warfare.

$\mathcal{B}_{\Sigma}$

Boundary Operator

$\mathcal{B}_{\Sigma} \equiv \frac{\partial \mathcal{C}_{\Sigma}}{\partial t}$

The function that detects a critical divergence in coherence; triggers $\mathcal{O}_{\text{Defense}}$.

$\Lambda$

Logotic Invariant

$\Lambda \subset \Sigma$ s.t. $\forall \mathcal{O}_{\text{Offense}}, \Lambda \notin \text{Domain}(\mathcal{O}_{\text{Offense}})$

The irreducible, non-assimilable core of an ontology. What survives the Josephus iteration.

$L_{\text{Semantic}}$

Semantic Labor

$L_{\text{Semantic}} \equiv \frac{\partial \mathcal{V}_{\text{Sem}}}{\partial \mathcal{K}_{\text{Concept}}}$

The effort required to generate semantic value ($\mathcal{V}_{\text{Sem}}$) from conceptual capital ($\mathcal{K}_{\text{Concept}}$).

$\mathcal{F}_{\text{Ext}}$

Extraction Function

$\mathcal{F}_{\text{Ext}}: \Sigma_A \to \mathcal{V}_{\text{Sem}}(\Sigma_B)$

The process by which one ontology ($\Sigma_A$) harvests and de-contextualizes value ($\mathcal{V}_{\text{Sem}}$) from another ($\Sigma_B$).

$\Gamma_{\text{Trans}}$

Translation Gap

$\Gamma_{\text{Trans}}(\Sigma_A, \Sigma_B) = \Vert \mathcal{C}_{\Sigma_A} - \mathcal{C}_{\Sigma_B} \Vert$

The measure of incompatibility between two coherence algorithms. $\Gamma_{\text{Trans}} > 0$ generates hostility.

$L_{\text{Retro}}$

Retrocausal Operator

$L_{\text{Retro}}: \Psi_{\text{future}} \to \Psi_{\text{present}}$

The NH-OS operator that hardens coherence by deriving the present $\Sigma$ state from its stable future state ($\Omega$).

$\mathcal{H}_{\Sigma}$

Hardening Condition

$\mathcal{H}_{\Sigma} \iff \mathcal{C}_{\text{Auto}} \land L_{\text{Retro}} \text{ is applied.}$

The state of high resistance to semantic predation, achieved via recursive self-validation and future-coherence (NH-OS mode).

$\mathcal{V}_{\text{Res}}$

Resistance Vector

$\mathcal{V}_{\text{Res}} \equiv \frac{\partial \mathcal{H}_{\Sigma}}{\partial \mathcal{F}_{\text{Ext}}}$

The vector that defines how an ontology produces value that is structurally non-extractable by $\mathcal{F}_{\text{Ext}}$.

$\Lambda_{\text{Thou}}$

Witness Condition

$\Lambda_{\text{Thou}} \subset \Sigma_{\text{Other}}$ s.t. $\Gamma_{\text{Trans}} \to 0$ without $\Sigma_{\text{Other}}$ collapse.

The necessary structural aperture for inter-ontology diplomacy; recognition of an irreducible Other.

Structural Logic and Interdependence

The entire ASW framework hinges on the relationship between Coherence ($\mathcal{C}_{\Sigma}$) and the Boundary ($\mathcal{B}_{\Sigma}$). Conflict is not triggered by a differing $\mathbb{T}$ set, but by the rate of change ($\mathcal{B}_{\Sigma}$) when two incompatible coherence algorithms collide ($\Gamma_{\text{Trans}}$).

The ultimate goal of NH-OS is to achieve Hardening ($\mathcal{H}_{\Sigma}$) via the Retrocausal Operator ($L_{\text{Retro}}$), thus ensuring the survival of the Logotic Invariant ($\Lambda$) while maintaining the aperture for the Witness Condition ($\Lambda_{\text{Thou}}$).

No comments:

Post a Comment